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This study investigates the existence and stability of static liquid bridges in non-
axisymmetrically buckled elastic tubes. The liquid bridge which occludes the tube is
formed by two menisci which meet the tube wall at a given contact angle along a
contact line whose position is initially unknown. Geometrically nonlinear shell theory
is used to describe the deformation of the linearly elastic tube wall in response to
an external pressure and to the loads due to the surface tension of the liquid bridge.
This highly nonlinear problem is solved numerically by finite element methods.

It is found that for a large range of parameters (surface tension, contact angle
and external pressure), the compressive forces generated by the liquid bridge are
strong enough to hold the tube in a buckled configuration. Typical meniscus shapes
in strongly collapsed tubes are shown and the stability of these configurations to
quasi-steady perturbations is examined. The minimum volume of fluid required to
form an occluding liquid bridge in an elastic tube is found to be substantially
smaller than predicted by estimates based on previous axisymmetric models. Finally,
the implications of the results for the physiological problem of airway closure are
discussed.

1. Introduction
The lung’s airways are coated with a thin liquid film which affects many aspects of

its mechanical behaviour (Grotberg 1994; West 1995). In the smaller airways, where
the wall curvature is large, the surface tension of the liquid film is important and is
generally believed to be the cause of ‘airway closure’ which has been observed directly
(Macklem, Proctor & Hogg 1970) and indirectly (Otis et al. 1996) in the excised lungs
of laboratory animals. Airway closure occurs through the formation of liquid bridges
which occlude the airway lumen. The formation of these liquid bridges is assumed
to follow the growth of a Rayleigh instability of the liquid lining which Kamm &
Schroter (1989) refer to as ‘film collapse’. The formation of the liquid bridge can
be accompanied (and indeed dominated) by large elastic deformations of the airway
walls, leading to a so-called ‘compliant collapse’.

Many important contributions to the understanding of this problem have been
made over the past three decades: Everett & Haynes (1972) and Kamm & Schroter
(1989) carried out experimental investigations into the formation of liquid bridges in
rigid circular tubes and established the minimum volume of liquid required to form
an occluding liquid bridge. Goren (1962), Hammond (1983), Gauglitz & Radke (1988)
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and Johnson et al. (1991) studied the evolution of disturbances to an annular liquid
film inside a rigid tube after the film has undergone a Rayleigh instability. Halpern
& Grotberg (1992, 1993) investigated how wall elasticity affects the formation of the
liquid bridge and derived coupled evolution equations for the film thickness and wall
deformation in a thin-walled axisymmetric elastic tube. By following the evolution
of the air–liquid interface until its minimum radius approached zero at some point
along the tube, it was shown that occluding liquid bridges do indeed form for a wide
range of parameter values. The computations were usually stopped shortly before the
minimum radius was reduced to zero and hence before the liquid bridge was actually
formed. Following the formation of a liquid bridge, fluid will continue to drain from
the liquid lining into the liquid bridge until the film ruptures or until (asymptotically)
the film thickness has been reduced to zero. For an axisymmetric tube, the final steady
state of the combined fluid–elastic instability is an axisymmetric liquid bridge formed
by two spherical air–liquid interfaces which meet the (possibly deformed) tube wall
at a constant contact angle γ. During the draining of the liquid film, satellite liquid
collars, which become disconnected from the main liquid bridge, can develop (see e.g.
Gauglitz & Radke 1988).

Throughout the formation of the liquid bridge, the pressure exerted by the fluid
on the tube wall is most compressive in the region where the liquid bridge is being
formed. Given the rather large axisymmetric deflections of up to 20% of the tube’s
radius (Halpern & Grotberg 1992, 1993), the question arises of whether the tube wall
will indeed remain axisymmetric. Typically, thin-walled cylindrical tubes buckle when
their axisymmetric pre-buckling deformations are much smaller. In this context, it is
interesting to note that most investigations of airway re-opening (i.e. the reversal of
the process discussed above) assume that the occluded airway is indeed in a strongly
collapsed state such that the flattened opposite walls of the airway have to be ‘peeled
apart’ during the re-opening (e.g. Gaver, Samsel & Solway 1990).

Ultimately, this question will need to be studied by examining the stability of the
time-dependent axisymmetric wall and air–liquid interface shapes to non-axisymmetric
disturbances. The investigation of the system’s evolution to a final steady state (in
which a liquid bridge might or might not have formed in the buckled tube) would
require the solution of a large-displacement fluid–structure interaction problem with
two free surfaces. An alternative (and computationally much cheaper) approach is
pursued in this paper which examines the existence and stability of static liquid bridges
in axisymmetric and non-axisymmetrically buckled elastic tubes. We investigate under
what circumstances the compressive forces exerted by a liquid bridge on the wall of
a long thin-walled tube of initially circular cross-section are large enough to keep
the tube wall in a buckled shape. This will establish the necessary criteria for the
existence of stable liquid bridges in non-axisymmetrically buckled tubes and will also
allow us to determine the minimum volume of fluid required to form an occluding
liquid bridge in an elastic tube.

The paper is organized as follows. In § 2 we will introduce the model problem
considered in this study and discuss the variational equations governing the wall
deformation and the meniscus shapes. Sections 2.3 and 2.4 discuss the interaction be-
tween the liquid bridge and the tube wall and the choice of parameters and boundary
conditions to be used for the study. Section 3 presents the procedure employed for the
numerical solution of the coupled fluid–structure interaction problem. The results are
presented in § 4: first we consider the shapes of menisci in uniformly buckled tubes
(corresponding to the limiting case when the air–liquid surface tension is very small
and the pressure jump over the menisci can be neglected). This subsection helps to
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explain some of the results presented in § 4.2, which is concerned with minimal liquid
bridges in non-uniformly buckled tubes. Section 4.3 investigates the stability of the
liquid bridges to quasi-steady perturbations. Finally, § 5 examines the relevance of the
findings to the airway closure problem.

2. The model
We will investigate a conceptually simple model problem which focuses on the

interaction of the liquid bridge with the non-axisymmetric deformation of the elastic
tube in which it is contained. The tube will be modelled as a thin-walled, linearly
elastic shell which is partly filled with fluid. The tube deforms in response to an
external pressure p∗ext and to the additional loads induced by the surface tension σ∗
of the air–liquid interfaces. For simplicity we will neglect gravitational effects. Under
these conditions, the two menisci enclosing the liquid bridge are surfaces of constant
mean curvature which meet the tube wall at a prescribed contact angle γ along two
contact lines whose position has to be determined as part of the solution.

2.1. The shell equations

We use a geometrically nonlinear Kirchhoff–Love-type shell theory (described in detail
in Heil & Pedley 1996 and Heil 1997) to model the deformation of the cylindrical
tube of midplane radius R0 and wall thickness h. We express the tube’s deformation
in terms of the dimensionless midplane displacements v = v∗/R0. The superscript star
distinguishes dimensional quantities from their non-dimensional equivalents. We use
Lagrangian coordinates ξα = ξ∗α/R0 (Greek and italic indices have values 1, 2 and
1, 2, 3, respectively, and the summation convention is used) to parametrize the shell’s
midplane such that the non-dimensional vector from the origin of a spatially fixed
Cartesian coordinate system, (x, y, z), to the undeformed midplane, r0 = r∗0/R0, is
given by

r0 =
(
sin(ξ2), cos(ξ2), ξ1

)T
, ξ2 ∈ [0, 2π]. (1)

The parametrization of the tube is illustrated in figure 1. The position of a material
point at a non-dimensional distance ξ3 = ξ∗3/R0 from the shell’s undeformed midplane
is then given by

r = r0 + ξ3nw, ξ3 ∈ [−h/(2R0), h/(2R0)], (2)

where nw =
(
sin(ξ2), cos(ξ2), 0

)T
is the outward normal vector on the undeformed

midplane.
After the deformation, the material point on the midplane with the Lagrangian

coordinates ξα has been displaced to a new position R0(ξα) = r0(ξα) + v(ξα). We
decompose the displacement vector v into the undeformed basis, v = vj aj , where
the undeformed base vectors are given by aα = r0

,α and a3 = nw . The comma denotes
the partial derivative with respect to the Lagrangian coordinates. Lowercase and
uppercase letters are used for shell variables associated with the undeformed and
deformed geometry, respectively.

The Kirchhoff–Love assumption states that material lines which were normal
to the undeformed midplane remain normal to the shell’s midplane thoughout its
deformation and that they remain unstretched. Therefore, the vector to an arbitrary
material point in the shell after the deformation is given by

R = R0 + ξ3Nw, (3)

where Nw is the outward normal vector on the deformed shell.
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It has been shown previously (e.g. Heil & Pedley 1996) that even though the buckling
tube undergoes large displacements, the wall’s extensional deformation remains small.
This allows the use of Hooke’s law as the constitutive equation. Then the principle of
virtual displacements which governs the shell’s deformation is given by (see Wempner
1973) ∫ ∫ [

Eαβγδ

(
γαβ δγγδ +

1

12

(
h

R0

)2

καβ δκγδ

)

− 1

12(1− ν2)

(
h

R0

)2

(f · δR) |ξ3=±h/(2R0)

]
dξ1 dξ2

−
∫
S

1

12(1− ν2)

(
h

R0

)2

(l · δR) |ξ3=−h/(2R0)ds = 0, (4)

where f = f∗/K is the traction per unit area of the undeformed midplane, non-
dimensionalized with the tube’s bending stiffness K = E(h/R0)

3/[12(1 − ν2)] and l
represents a line force (a force per unit length acting along the line S on the inside of
the tube – this will be made more specific below). γαβ and καβ are the non-dimensional
strain and bending tensors, respectively, and the dimensionless plane stress stiffness
tensor, Eαβγδ = E∗αβγδ/E is given by

Eαβγδ =
1

2(1 + ν)

(
δαγδβδ + δαδδβγ +

2ν

1− ν δ
αβδγδ

)
, (5)

where the tube’s Poisson ratio and its elastic modulus are denoted by ν and E,
respectively. The variations of strain and bending tensors have to be taken with
respect to the displacements vi and their derivatives.

2.2. The meniscus equations

Using the Lagrangian coordinates ξα introduced in the previous section, the vector to a
material point on the inside of the tube wall is given by Rw(ξα) = R(ξα, ξ3 = −h/(2R0)).
We will assume that the contact line can be parametrized in the form ξ1 = ξ1

c (ξ
2);

see figure 1.
For small contact angles and large wall slopes, parts of the meniscus might not

project simply onto the (x, y)-plane (see figure 2). Therefore, the meniscus shape needs
to be determined in parametric form: we choose a set of surface coordinates ζα (where
ζ2

1 + ζ2
2 6 1) to parametrize the meniscus such that the meniscus shape is given by

Rm(ζ1, ζ2) and the contact line is parametrized by ϕ = arctan(ζ1/ζ2) as

Rc(ϕ) = Rm(sin(ϕ), cos(ϕ)), ϕ ∈ [0, 2π]. (6)

To ensure that the meniscus boundary coincides with the contact line on the wall,
parametrized by ξ1

c (ξ
2), we choose the meniscus parametrization such that ϕ = ξ2

and thus obtain

Rc(ϕ) = Rw(ξ1
c (ϕ), ϕ). (7)

The contact angle γ is given by

γ = sgn(T ·Nw) arccos(Nm ·Nw), (8)

where Nm = (Rm,1 × Rm,2)/|Rm,1 × Rm,2| is the normal vector on the meniscus and
T = (Nm × Rc,ϕ)/|Nm × Rc,ϕ| is the vector tangential to the meniscus and normal to
the contact line.
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Figure 1. Sketch of the buckled tube containing a meniscus. The ξα and ζα coordinates parametrize
the tube wall and the meniscus, respectively. ξ1 = ξ1

c (ξ
2) and ϕ = arctan(ζ1/ζ2) are used to

parametrize the contact line in the shell and meniscus coordinates, respectively.

The meniscus shape is determined by the principle of virtual displacements (Landau
& Lifshitz 1987), ∫ ∫ (

δA1/2
m − κ Nm · δRmA1/2

m

)
dζ1 dζ2 = 0, (9)

which equates the work done by the non-dimensional pressure jump, ∆p = ∆p∗/K ,
over the meniscus during a virtual displacement of the meniscus, with the change in

the meniscus’ non-dimensional surface energy, σA1/2
m . The non-dimensional surface

tension, σ = σ∗/(R0K) represents the ratio of the typical pressure jump over the
air–liquid interfaces to the tube’s bending stiffness and Am = |Rm,1 × Rm,2|2 is the
determinant of the metric tensor of the surface parametrized by (ζ1, ζ2). Only the
parameter κ which is equal to twice the mean curvature of the interface appears in
the variational equation since the pressure jump over the interface is related to the
surface tension by ∆p = σκ.

The variational equation (9) has to be augmented by various boundary conditions.
First, either the contact line position ξ1

c (ϕ) or the contact angle γ(ϕ) have to be
prescribed. Second, we need to prescribe the volume of fluid, V, contained in the
liquid bridge or apply a displacement constraint which directly prescribes the axial

position of one point on the meniscus, e.g. Rm(0, 0) = (0, 0, Ẑ)T . The meniscus
curvature, κ, plays the role of a Lagrange multiplier for the volume or displacement
constraint and has to be determined as part of the solution.

2.3. The meniscus–wall interaction

Three different surface tensions, σwl, σwa and σ, act at the three material interfaces
(wall–liquid, wall–air and air–liquid, respectively). Since the system is at rest, the bulk
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fluid pressures in the air-filled and liquid-filled parts of the tube are constant. The
pressure jump over the three interfaces is given by the products of their curvature
with the respective surface tensions (see e.g. Batchelor 1967). We neglect the effect
of the so-called ‘line tension’ (a tension acting along the contact line, apparently first
discussed by Gibbs 1906) since its influence on the macroscopic behaviour of the
three material interfaces is believed to be negligible (see e.g. Pethica 1977).

We set the reference pressure in the air-filled part of the tube to pair = 0. Then
the non-dimensional bulk pressure in the liquid-filled part of the tube is given by
pliquid = −σκ, where κ is the constant curvature of the air–liquid interface.

The equilibrium of forces at the contact line in the direction tangential to the wall
establishes Young’s equation for the contact angle,

cos γ =
σwa − σwl

σ
, (10)

and the equilibrium in the direction normal to the wall shows that the normal
component of the air–liquid surface tension acts as a line force on the tube wall.
The presence of this line force was investigated by various authors who studied the
deformation of thin (visco-)elastic sheets onto which small drops of high-surface-
tension liquids were deposited (see e.g. Fortes 1984; Shanahan 1985; Carré, Gastel
& Shanahan 1996; Extrand & Kumagai 1996 and Long, Ajdari & Leibler 1996). It
should be noted that, similarly to the pressure jump over the air–liquid interface,
the wall–liquid and wall–air surface tensions make the normal stress experienced by
the curved tube wall different from the bulk pressures in the respective fluids. This
effect is negligible for surfaces of zero initial curvature, such as those considered in
the above-mentioned experimental studies on plane elastic sheets. However, for the
geometry considered here, it is not immediately obvious if the pressure jumps across
the fluid–wall interfaces have a significant effect on the wall deformation: Consider
the case of an air–liquid interface which meets the undeformed axisymmetric tube of
radius R at a small contact angle. In this case the pressure jump over the meniscus
is approximately ∆p ≈ 2σ/R and we have implicitly assumed that this pressure jump
is large enough to lead to a significant bending deformation of the tube wall. Now
equation (10) shows that for small contact angles the two fluid–wall surface tensions
σwa and σwl have to be of the same order of magnitude as (or even larger than) the
air–liquid surface tension σ. This is also confirmed by experimental measurements of
these quantities (see e.g. Bailey 1961 and Bailey & Kay 1967). Given that the wall
curvature, κw = 1/R, is of the same order of magnitude as the meniscus curvature,
this indicates that the pressure jump over the fluid–wall interfaces is comparable with
the pressure jump over the meniscus and hence important. This observation leads to
the surprising implication that the mere submersion of a sufficiently thin cylindrical
tube in a liquid should lead to a noticeable deformation (note that the wall–fluid
surface tensions on the inside and on the outside of the tube wall act in the same
sense). This does not seem to have been observed experimentally.

The apparent paradox is resolved by realizing that a positive surface tension
attempts to minimize the interfacial area. In the case of the fluid–wall surface tensions,
this can only be achieved by compressing the tube wall in-plane. Since the tube’s
extensional stiffness is much larger than its bending stiffness, the corresponding
deformation is much smaller than the deformation due to the pressure jump over the
air–liquid interface which has to be balanced by the tube’s bending stiffness when the
tube is in its buckled state.

Consequently, we neglect the effect of the fluid–wall surface tensions and thus
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obtain the traction f on the wall as

f =

{ −pextNw for ξ1 < ξ1
c (ξ

2)
(−pext − σκ)Nw for ξ1 > ξ1

c (ξ
2).

(11)

The line force l in the variational equation (4) is given by the normal component of
the surface tension along the contact line, σT ·Nw , therefore we have∫

S

(l · δR) |ξ3=−h/(2R0) ds =

∫ 2π

0

((σT ·Nw)Nw · δRw)

∣∣∣∣∂Rc(ϕ)

∂ϕ

∣∣∣∣ dϕ. (12)

2.4. Choice of parameters and boundary conditions

So far we have not specified the boundary conditions to be applied to the shell
equations. Most previous theoretical investigations were concerned with infinitely
long tubes whose deformation was assumed to be periodic in the axial direction. The
axial wavelength of the periodic deformation was assumed to be that of the most
strongly growing mode obtained from the linear stability analysis. This was shown to
depend on, amongst other parameters, the wall damping (Halpern & Grotberg 1992)
which does not play a direct role in the present investigation since only steady states
are considered.

We will enforce axially periodic deformations of the tube but impose the symmetry
conditions far away from the meniscus in order to minimize their direct effect on the
tube’s interaction with the liquid bridge. We choose a wall thickness of h/R = 1/20
which is close to the limits of the applicability of thin-shell theory and set Poisson’s
ratio to ν = 0.49 to model the near incompressible behaviour of biological tissue
or rubber – the latter being the more likely material to be used in a laboratory
experiment.

The boundary conditions for the meniscus depend on the particular problem under
consideration and will be discussed where appropriate.

3. The numerical solution
The numerical solution of the shell equations, with the load terms specified by

(11) and (12), was achieved by discretizing the variational equation (4) with Nw

quadrilateral Hermite finite elements (Bogner, Fox & Schmit, 1967). This followed the
approach taken in Heil & Pedley (1996) where more details of the implementation
and validation can be found. The solution of the variational equation (9) for the
meniscus shape is problematic since the variational equation only determines the
meniscus shape but not its parametrization. Infinitely many two-parameter vector
functions Rm(ζα) parametrize the same meniscus shape (this is an important difference
to the Lagrangian description of the tube wall, in which the coordinates ξα label
material points). The corresponding lack of compactness is usually overcome by the
imposition of additional constraints on the parametrization, e.g. by requiring that the
mapping from the ζα-unit disk to the meniscus be conformal (see e.g. Struwe 1988). A
computationally more efficient approach is given by the method of spines (e.g. Kistler
& Scriven 1983 and Rast 1994) which we will employ here. We will only allow the
points on the meniscus to move along certain predetermined vectors, S(ζ1, ζ2), (the
spines) in space. The spines have to be chosen in advance such that each point on
the meniscus is only intersected by one spine. Then only a scalar field, w(ζ1, ζ2), which
represents the displacement along the spines needs to be determined.

For the present problem, the spines need to be chosen such that: (i) the boundary
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of the meniscus meets the wall along the contact line and (ii) meniscus shapes which
do not project simply onto the (x, y)-plane can be represented. This is achieved by
splitting the position vector to the meniscus into two components

Rm(ζ1, ζ2) = B(ζ1, ζ2) + w(ζ1, ζ2) S(ζ1, ζ2). (13)

To fulfil condition (i) we choose the vector to the spine origin, B(ζ1, ζ2), such that
B(sin(ϕ), cos(ϕ)) = Rc(ϕ) and require that the scalar displacement field, w, vanishes
at the boundary, i.e. w(sin(ϕ), cos(ϕ)) = 0. A simple choice for B(ζ1, ζ2) which works
well for moderately collapsed tubes and illustrates the general idea is

Bα(ζ1, ζ2) = ρRαc (ϕ), (14)

B3(ζ1, ζ2) = R3
c (ϕ) + (1− ρ)(R̂3

c − R3
c (ϕ)), (15)

where ϕ = arctan(ζ1/ζ2), ρ = (ζ2
1 + ζ2

2 )1/2 and R̂3
c is an arbitrary constant which was

set to R̂3
c = maxϕ R

3
c (ϕ). A better choice which was used for the computations in

strongly collapsed tubes is given in Appendix A. To fulfil condition (ii) the spines
must be inclined away from the tube’s axis near the contact line while symmetry
requires them to be parallel to the tube’s axis on the centreline. A simple choice which
proved sufficient for all computations is given by

Sα(ζ1, ζ2) =
ρζα

R̄

[
ρ4

R̄2
+

(
1−

( ρ
R̄

)2
)2
]−1/2

, (16)

S3(ζ1, ζ2) =

(
1−

( ρ
R̄

)2
)[

ρ4

R̄2
+

(
1−

( ρ
R̄

)2
)2
]−1/2

. (17)

The required change in the spines’ orientation is achieved by the terms outside the
square brackets (the terms in the square brackets merely normalize the spines to unit
length). On the tube’s centreline the spines point in the axial direction, S(0, 0) = ez;
the parameter R̄ controls the extent to which the spines rotate outwards as one
approaches the contact line (ρ = 1): R̄ → 1 makes them point radially outwards on
the contact line; for R̄ →∞ they remain parallel to the z-axis. For most computations
a value in the range between R̄ = 5 and R̄ = 10 was used. The spines are illustrated
in figure 2.

We insert (13) into (9), carry out the variations with respect to the displacement field
w and its derivatives with respect to the surface coordinates ζα and thus transform
(9) into ∫ ∫ (

∂A1/2
w

∂w
δw +

∂A1/2
w

∂w,α
δw,α − κ Nw · S A1/2

w δw

)
dζ1dζ2. (18)

To discretize this equation we decompose the ζα-domain into Nm isoparametric finite
elements and express the displacement field w(ζα) as

w =
∑
j

W jψj, (19)

where the ψj are two-dimensional piecewise quadratic shape functions (see e.g.
Becker, Carey & Oden 1984). After substituting (19) into (18) we carry out the
variations with respect to the discrete displacements, Wj , and obtain Mm equations
for those Wj(j = 1,Mm) which are not determined by the boundary conditions. The
displacement (or volume) constraint provides the additional equation required for the
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Figure 2. Sketch illustrating the representation of the meniscus using spines. The points on the
meniscus are only allowed to move in the direction of the spines S . The spines rotate outwards as
they approach the contact line, thus allowing the representation of menisci which do not project
simply into the (x, y)-plane. The origins of the spines are coupled to the contact line position.

determination of the meniscus curvature κ. If the contact line position is prescribed
then these Mm+1 equations completely determine the meniscus shape and the contact
angle can be obtained from (8).

In order to enforce a constant contact angle, we have to allow the contact line to
move. For this purpose we discretize the contact line parametrization, ξ1

c (ϕ), with Nc

one-dimensional isoparametric finite elements such that

ξ1
c =

∑
j

Xjψ̂j , (20)

where the ψ̂j are one-dimensional piecewise quadratic shape functions. The additional
equations required to determine the unknown contact line parameters Xj(j = 1,Mc)
were determined by a Galerkin method in which the residual of the contact angle
equation, γ(ϕ)− γprescribed = 0, was weighted with the shape functions ψ̂j .

An automatic mesh generator (described in detail in Heil 1998) was used to
generate a three dimensional volume mesh for the determination of the volume of fluid
contained in the liquid bridge. The symmetry of the buckled configuration requires the
discretization of only a quarter of the respective domains (ξ2 ∈ [0, π/2], ζα > 0) and
the application of appropriate symmetry boundary conditions. The highly nonlinear
coupled system of equations was solved with a Newton–Raphson method which
was embedded in an adaptive continuation procedure. This procedure allowed the
computation of solutions which correspond to menisci in strongly collapsed tubes
through a sequence of intermediate states, starting with a slightly buckled tube for
which the undeformed axisymmetric configuration provided a good initial guess.
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In order to validate the newly developed meniscus solver, a wall shape with elliptical
cross-sections whose major and minor axes varied linearly with ξ1 as Rw = [(a0 +(a1−
a0)ξ

1) cos(ξ2), (b0 + (b1 − b0)ξ
1) sin(ξ2), ξ1]T was chosen. The intersection of this wall

with a sphere of radius 2/κ, with centre-point at the origin, was determined analytically
and the variable contact angle along the contact line was prescribed as the input for
the numerical computation. The parameters were chosen such that the contact line
extended across the sphere’s equator (a0 = 1.4, a1 = b1 = 2.3, b0 = 1.7, κ = 1.351)
thus creating a meniscus which did not project simply onto the (x, y)-plane. For
Nm = 52 internal elements and Nc = 8 elements for the contact line (a total of 252
degrees of freedom), the relative r.m.s.-errors for the meniscus shape and the contact
line position were 2.31 × 10−6 and 7.0 × 10−4, respectively. This test was repeated
for a range of parameters and similar results were obtained. Further test cases in
axially uniform tubes included Concus & Finn’s (1974) spherical cap in a cylinder
of quadratic cross-section and the intersection of Scherk’s surface (a surface of zero
mean-curvature; see e.g. Carmo 1976) with an elliptical cylinder. A consistency test
for the computed values of the contact line position and the meniscus curvature was
carried out using equation (B 4) which is derived in Appendix B.

In most computations presented below, the wall, the meniscus and the contact line
were discretized with Nw = 66, Nm = 52 and Nc = 8 finite elements resulting in a
total of 1053 degrees of freedom. The mesh independence of the numerical results
was confirmed by repeating selected computations with an increased resolution. An
example of this is shown in figure 6 below, in which the solid line shows the results
obtained from a computation with the standard resolution while the dotted line shows
the results obtained with a finer resolution using Nw = 120, Nm = 116 and Nc = 12
elements (1977 degrees of freedom).

The most expensive part of the computation is the setup of the global Jacobian
matrix and the solution of the linear systems (using LU-decomposition) during the
Newton–Raphson iteration. A typical computation, tracing the tube’s deformation
and the corresponding meniscus shape from a slightly buckled to a strongly collapsed
configuration required several hours of CPU time on a DEC Alpha workstation.

4. Results
4.1. Menisci in uniformly collapsed tubes; σ = 0

We will first examine the case in which the non-dimensional surface tension σ is zero so
that the pressure jump over the meniscus does not affect the tube’s deformation which
is therefore controlled by the external pressure alone. In this case the tube deforms
uniformly (i.e. without any axial variations) and it buckles non-axisymmetrically when
the external pressure exceeds the buckling pressure p(crit)

ext = 3 (see e.g. Simitses 1976).
For small and moderately large buckling deformations, the tube’s cross-sectional area
is approximately elliptical; for larger deformations it becomes dumb-bell shaped.
This is illustrated in figure 3 which shows a sequence of increasingly collapsed tubes
containing a single meniscus. Since the tube’s deformation is uniform, the axial
position of the meniscus is arbitrary and was chosen such that the apex of the
meniscus remained at the ‘end’ of the tube at z = 0, i.e. maxR3

m = zm(max) = 0. The
tube’s deformation characteristics are illustrated in figure 4 (a) where the solid line
shows the relation between the external pressure, pext, and the tube’s non-axisymmetric
deformation, characterized by the radial wall displacement vctrl at the most strongly
collapsed point in the tube (in the plane y = 0). The plot shows that an increase in
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Figure 3. Sequence of uniformly collapsed tubes containing a single meniscus. As the tube’s collapse
increases, the meniscus develops a long finger along the tube’s centreline. The contact angle is
γ = 10◦. (a) vctrl = −0.450, pext = 3.41; (b) vctrl = −0.720, pext = 4.06; (c) vctrl = −0.833, pext = 4.46;
(d) vctrl = −0.875, pext = 4.65. A lengthscale is provided by the circumferential lines on the tube
wall which are spaced ∆z = 0.526 apart.

the external pressure beyond the buckling pressure leads to a rapid collapse of the
tube: for pext = 4, the control point has collapsed radially inwards by about 70% of
the tube’s undeformed radius; for pext = 5.15 the opposite walls come into contact
when vctrl = −(1 − h/(2R0)) = −0.975. The computation could only be carried out
up to the first occurrence of opposite wall contact since the contact problem is not
included in the present numerical model.

Figure 3 shows how the shape of the meniscus, which meets the tube wall at
a constant contact angle of γ = 10◦, varies with the tube’s deformation. For an
axisymmetric tube (not shown), the meniscus is a spherical cap which meets the tube
wall along the line z = −0.818. During the early stages of the tube’s post-buckling
deformation, when the cross-sections are approximately elliptical, the contact line
moves in the negative z-direction in the plane x = 0 where the wall curvature is
higher; it moves in the positive z-direction in the plane y = 0 where the tube wall
is relatively flat. If the tube’s cross-sections were to remain elliptical throughout the
deformation then this trend would continue and two long thin ‘tongues’ would develop
in the two regions of high wall curvature.

Figure 3 shows that this trend is reversed when the tube’s cross-section begins
to change to a dumb-bell shape: in the plane x = 0, the contact line moves in the
positive z-direction and a narrow meniscus finger begins to develop in the most
strongly collapsed part of the tube. This finger grows very rapidly along the tube’s
centreline in the negative z-direction as the tube’s collapse increases.

The development of this finger is closely related to the fact that the meniscus
is a surface of constant mean curvature. To explain this, we express the meniscus’
curvature in terms of its principal radii of curvature on the tube’s axis, i.e. κ =
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Figure 4. Characteristic parameters for menisci of various contact angles in a uniformly collapsing
tube: (a) external pressure, pext, and the tube’s cross-sectional area, Asect; (b) meniscus curvature, κ;
(c) z-coordinate of ‘lowest’ point of the contact line, zc(min); and (d) meniscus surface area, Ameniscus

– all plotted versus the tube’s deformation, characterized by the radial displacement, vctrl , of the
most strongly collapsed point on the tube wall. The legend for the linestyles in figure (c) applies to
(b) and (d) also.

1/Rx + 1/Ry . As the tube collapses, the vertical distance between the opposite walls,
G = 2(1 − h/(2R0) + vctrl), is reduced and for small G the meniscus’ vertical radius
of curvature, Rx, is enforced by the contact angle. Hence, 1/Rx ≈ 2 cos γ/G, which
grows very rapidly as the opposite walls approach each other. Equation (B 5), derived
in Appendix B, shows that the curvature κ varies inversely with the tube’s cross-
sectional area, Asect, which decreases approximately linearly with vctrl (see figure
4 a) and remains finite. The tube wall deforms with little circumferential extension,
therefore the length S of the contact line’s projection onto the (x, y)-plane remains
approximately constant. Hence κ only grows slowly (see figure 4 b) and the large
increase in 1/Rx has to be compensated for by a decrease in 1/Ry which changes
from a positive value (in figure 3 a) through zero (in figure 3 b) to increasingly large
negative values (in figure 3c, d) thus causing the development of the finger. Ultimately,
an asymptotic structure develops in which the two nearly straight sides of the long
finger smoothly connect the finger tip of hyperbolic curvature to the parts of the
meniscus in the two outer lobes which are relatively unaffected by the development
of the finger and retain their initial elliptical curvature (see figure 3d).

Figure 4 (b–d) further illustrates this behaviour and also demonstrate the effect of
variations in the contact angle. The meniscus curvature in the undeformed tube is
given by κ0 = 2 cos γ/(1− h/(2R0)) and figure 4 (b) shows that for all contact angles
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the meniscus curvature increases to about twice that value before the finger begins to
develop. Since the apices of the menisci are kept fixed at z = 0, the initial position of
the contact line in the unbuckled tube is given by zc0 = −[2/κ0 − (1− h/(2R0)) tan γ].
Figure 4 (c) shows how the ‘lowest’ point on the contact line, zc(min) = minR3

c (ϕ),
initially moves into the negative z-direction and then reverses its direction when vctrl

exceeds a value of vctrl ≈ 0.5. Finally, the finger develops and grows rapidly, moving
the ‘lowest’ point on the contact line in the negative z-direction as the tube’s collapse
increases. The development of the finger is delayed by an increase in the contact
angle but it develops for all γ < 90◦. The case γ → 90◦ is a singular limit since for
γ = 90◦ the meniscus’ curvature vanishes and is independent of the cross-sectional
shape. The limit γ → 0◦ is regular even though this case cannot be investigated with
the present computational approach (see Appendix C). Finally, figure 4 (d) shows that
the meniscus’ surface area (and hence its surface energy) decreases monotonically
with increasing collapse until the development of the finger increases it sharply.

4.2. Liquid bridges of minimum volume

We will now consider the case in which the non-dimensional air–liquid surface tension
σ is so large that the pressure jump over the two menisci which enclose the liquid
bridge affects the deformation of the tube. We will determine the meniscus shapes
and the minimum volume of fluid, Vmin , required to form an occluding liquid bridge
in a buckled tube. In the physiological applications, Vmin is an important parameter
since it is directly related to the minimum initial thickness of the uniform liquid
lining for which an occluding liquid bridge can develop. For a given tube shape, the
liquid bridge containing the smallest volume of liquid is formed by two ‘back-to-back’
air–liquid interfaces which touch each other at one or more points. We will refer to
this configuration as a minimal liquid bridge. In an axisymmetric tube of radius R,
the minimal liquid bridge is formed by two spherical air–liquid interfaces and the
enclosed volume is given by

V(ax.)
min =

2πR3

3

2 sin3 γ + 3 cos2 γ − 2

cos3 γ
. (21)

If the tube is elastic and deforms axisymmetrically, then the compression of the
tube wall in the region where it is wetted by the liquid bridge will reduce its radius R
and the minimal liquid bridge volume V(ax.)

min slightly. Much larger reductions in Vmin

can presumably be achieved if the tube is allowed to buckle non-axisymmetrically.
To investigate this case, we consider the deformation of a long tube which contains a
single minimal liquid bridge, enclosed between two air–liquid interfaces which touch
in the plane z = 0. Since the tube’s deformation is symmetric in the z-direction, only
one half of the tube and one meniscus have to be modelled. Symmetry boundary
conditions for the tube’s deformation were applied at z = 0 and far away from the
meniscus at z = −10. The meniscus position was determined by the displacement
constraint zm(max) = maxR3

m = 0. Computations were carried out for a wide range of
contact angles, external pressures and surface tensions.

Figure 5 shows two strongly collapsed tubes which contain a single minimal liquid
bridge. In each case, only one half of the tube and one meniscus are shown since
the configuration is symmetric about the plane z = 0. The external pressure acting
on the tube shown in figure 5(a) is zero, pext = 0, and the tube is held in a strongly
collapsed configuration by the large compressive load which the liquid bridge exerts
on the tube wall. Hence, the tube re-opens quickly to an axisymmetric shape as one
moves away from the pinched region. Since the width of the gap between the opposite
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Figure 5. Two strongly collapsed tubes containing a minimal liquid bridge. The symmetrically
deformed tubes were cut in the plane of symmetry (z = 0) and only one half of the tube and one
meniscus are shown. The larger parts of the pictures show close-ups of the region containing the
liquid bridge; the smaller pictures show the overall deformation of the tube. The circumferential
lines on the tube wall are spaced ∆z = 0.174 apart. γ = 10◦. (a) pext = 0, σ = 4.72; (b) pext = 3.5,
σ = 0.69.

walls increases rapidly with the axial distance from the tube’s most strongly collapsed
cross-section, the meniscus only develops a relatively small finger in the central part
of the tube.

Conversely, the tube shown in figure 5(b) is subject to an external pressure in excess
of the tube’s buckling pressure. Therefore, the tube remains strongly collapsed over
its entire length and the small width of the gap between the opposite walls leads to
the development of a strongly pronounced meniscus finger. A much smaller surface
tension is required to hold the tube in this strongly collapsed configuration.

We will now systematically investigate the range of parameter values for which
the forces generated by a minimal liquid bridge are sufficient to hold the tube in
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a buckled shape and document the corresponding values of Vmin . Since we have
already established the range of external pressures for which the tube collapses
(3 < pext < 5.15 for σ = 0), we will first consider the effect of variations in the surface
tension (variations in pext for σ = const. will be examined in § 4.3.2). For this purpose
a series of computations was carried out in which the values of the external pressure
and the contact angle were held at constant values while the tube’s deformation was
controlled by varying the surface tension. The two air–liquid interfaces were kept
in the ‘minimal liquid bridge configuration’ by applying the displacement constraint
zm(max) = 0.

In order to explain the fairly complicated dependence of Vmin on the surface
tension (presented below in figures 7 and 8) we will first analyse the results of
one such computation by interpreting them as if they were the outcome of an actual
experimental procedure. It should be noted that such an experiment would be difficult
to perform since one would not only have to carefully control the surface tension but
also constantly adjust the fluid volume in the liquid bridge to keep the opposite air–
fluid interfaces in contact. Figure 6 shows the results of a computation for pext = 0 and
γ = 10◦. The tube’s deformation, characterized by the radial wall displacements along
the major and minor axes in the most strongly collapsed cross-section in the plane
z = 0, is plotted against the surface tension, i.e. vctrl(σ)|zm(max)=0. The straight dashed line
of small negative slope corresponds to the tube’s axisymmetric deformation. For σ = 0
the tube is undeformed, vctrl = 0. With increasing surface tension, the compressive
load on the wetted part of tube wall increases and the control points are displaced
radially inwards by the same small amount. At σ = 9.10 (point ‘A’) the axisymmetric
solution becomes unstable and the tube buckles: the control point on the tube’s major
axis is displaced radially outwards (giving rise to the upper branch with positive vctrl )
while the other control point collapses radially inwards (corresponding to the lower
branch with negative vctrl). The diagram shows that the system undergoes a subcritical
bifurcation when the tube buckles: if the surface tension were kept constant during
the buckling (and if it were indeed possible to perform an experiment in this way),
then the tube would jump into a strongly collapsed configuration (point ‘C’) in which
the control point on the tube’s minor axis has collapsed radially inwards by about
75 % of the tube’s radius. This behaviour (known as ‘snap-through’ buckling) is well
known in the solid mechanics literature (see e.g. Kirstein & Wenk 1956) and has
been reported previously in other fluid–structure interaction problems (Heil & Pedley
1996; Heil 1997). The occurrence of the snap-through is due to the fact that the tube’s
bending stiffness is much smaller than its extensional stiffness. In the axisymmetric
state, all wall deformations are accompanied by a circumferential compression or
extension of the tube wall. Therefore, only small wall displacements are required
to generate the elastic restoring forces required to balance the compressive load
produced by the liquid bridge. Once the tube buckles, the main contribution to the
wall stiffness comes from its much smaller bending stiffness and a balance between the
compressive meniscus forces and the restoring elastic forces can only be achieved if (i)
the meniscus forces are reduced (by decreasing the surface tension – this corresponds
to the backwards curving part of the post-buckling curve from ‘A’ to ‘B’) or (ii) if
the wall is allowed to deform strongly to generate sufficiently large bending moments
(this corresponds to a jump along the line of constant surface tension from ‘A’ to ‘C’).

Once the tube has reached this strongly collapsed configuration, a further increase
in its deformation requires an increase in the compressive load which the liquid
bridge exerts on the tube wall. To some extent this is provided automatically since
the meniscus curvature increases with increasing collapse of the tube (similar to
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Figure 6. Bifurcation diagram, vctrl(σ)|zm(max)=0, for a tube containing a minimal liquid bridge: the
two control displacements (the radial displacements of the tube wall along the major (vctrl > 0)
and minor (vctrl < 0) axes of the tube’s most strongly collapsed cross-section) are plotted versus the
surface tension. The two air–liquid interfaces are kept in contact such that they enclose a minimal
liquid bridge. The dashed line represents the axisymmetric pre-buckling deformation, the solid line
corresponds to the post-buckling deformation. The dotted line was obtained with a finer spatial
discretization of the shell and meniscus equations. pext = 0 and γ = 10◦.

figure 4 b). Hence, the pressure jump over the air–liquid interfaces increases with the
tube’s collapse even if the surface tension remains constant. However, the wall area
which is wetted by the liquid bridge (and hence exposed to the compressive load)
initially decreases, especially in the region where the tube wall buckles inwards (as
shown in § 4.1). Therefore, a further collapse of the tube can only be achieved by
increasing the surface tension (this corresponds to the path from ‘B’ via ‘C’ to ‘D’).
When the tube’s collapse is increased past point ‘D’, the meniscus finger develops
and rapidly increases the wetted wall area in the central, inwardly collapsing part
of the tube. This increases the compressive load on the tube wall so rapidly that
a monotonic increase in the tube’s deformation can only be achieved if the surface
tension is reduced, giving rise to the path from ‘D’ to ‘E’. As mentioned before, the
computation was terminated when opposite wall contact occurred for the first time
(vctrl = −0.975, corresponding to the configuration shown in figure 5 a) since the wall
contact was not modelled.

Figure 7 shows how this behaviour manifests itself in the graphs for the minimal
liquid bridge volume, Vmin , as a function of the surface tension, σ. The different
linestyles correspond to different contact angles and for all cases the external pressure
was kept constant at pext = 0. The nearly straight lines of small negative slope
correspond to the axisymmetric configurations and illustrate the behaviour anticipated
earlier: at σ = 0 the lines intersect the volume axis at the value predicted by (21)
andVmin decreases slightly with increasing σ. Menisci with larger contact angles form
shallower liquid bridges of smaller volume.



Minimal liquid bridges in buckled elastic tubes 325

2.0

1.6

0.8

0.4

0 2 4 6 8 10 12

r

6min

1.2

14

c = 2.5°
c = 5°
c = 10°
c = 20°
c = 40°
c = 60°

Figure 7. Minimal liquid bridge volume, Vmin , as a function of the surface tension, σ, for pext = 0
and various contact angles γ. The nearly straight lines of small negative slope correspond to
axisymmetric pre-buckling configurations, the other lines represent buckled configurations.

In a certain range of surface tensions (between σ ≈ 5.5 and σ ≈ 9.5), there exist up
to three buckled equilibrium configurations (with different values of Vmin) in which
the meniscus forces balance the restoring wall forces. Vmin depends on the tube’s
cross-sectional area and on the average thickness of the liquid bridge. The tube’s
cross-sectional area decreases monotonically with the tube’s collapse and in the early
stages of the buckling, the average liquid bridge thickness only changes very little.
Hence,Vmin decreases monotonically with increasing collapse until the meniscus finger
begins to develop. Following this, the rapidly increasing volume of fluid contained
in the finger compensates for the further reduction in cross-sectional area and Vmin

remains approximately constant. The minimal liquid bridges of smallest volume are
formed in strongly collapsed tubes in which the meniscus finger has just started to
develop. The volume of fluid required to form these liquid bridges is about 10 % of
that required to form an occluding liquid bridge in the corresponding axisymmetric
configuration.

Figure 8 illustrates the dependence of Vmin on the external pressure, pext: if we
increase the external pressure, the tube can only withstand smaller compressive forces
from the liquid bridge before it buckles. Hence for increased external pressures,
buckling (and the corresponding reduction in Vmin) occurs at lower values of the
surface tension. For pext = p

(crit)
ext = 3, only an infinitesimally small surface tension is

required to induce the tube’s buckling. For external pressures in excess of the buckling
pressure (pext > 3), the tube remains collapsed (and Vmin considerably smaller than
the value for the axisymmetric tube) even for σ → 0. Note that for larger values of
the external pressure, the meniscus finger is much more pronounced as illustrated
in figure 5(b). In these cases the rapid increase in the volume of fluid contained in
the finger more than compensates for the reduction in the tube’s cross-sectional area
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Figure 8. Minimal liquid bridge volume, Vmin , as a function of the surface tension, σ, for γ = 10◦
and various pext. The nearly straight lines of small negative slope which correspond to axisymmetric
pre-buckling configurations overlap; the other lines represent buckled configurations.

as the tube’s collapse increases and Vmin has its minimum value shortly after the
meniscus finger begins to develop.

4.3. The stability of minimal liquid bridges

The results of the previous section indicate that for many combinations of the
control parameters (contact angle, surface tension and external pressure), there exist
multiple buckled equilibrium configurations (with different values of Vmin). We will
now investigate which (if any) of these buckled configurations are stable to quasi-
steady perturbations since only those configurations which fulfil this criterion would
be realizable in an experiment. For this purpose we first have to find a suitable
definition of ‘stability’ since most minimal liquid bridges are obviously unstable to a
particular class of disturbances: they can be destroyed by perturbations which re-open
the tube since the volume of fluid contained in a minimal liquid bridge will generally
not be sufficient to form an occluding liquid bridge in a slightly less collapsed tube.

4.3.1. The stability of axisymmetric minimal liquid bridges

To develop a suitable concept of stability we will first examine the deformation
characteristics of a tube which contains a minimal liquid bridge in its undeformed
axisymmetric configuration (V = V(ax .)

min = 1.87 for γ = 10◦). As before, we will
characterize the tube’s deformation by the radial displacements of the material points
on the major and minor axes of the tube’s most strongly collapsed cross-section.
However, we will now consider a physically realizable experiment and keep the
volume of fluid in the liquid bridge, the contact angle and the surface tension
constant and study the tube’s deformation as we vary the external pressure. The
corresponding bifurcation diagram, vctrl (pext )|V=V(ax .)

min =const ., is shown in figure 9. Let us
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Figure 9. Bifurcation diagram, vctrl (pext )|V=V(ax .)
min =const.

, for γ = 10◦ and constant liquid bridge volume

V(ax .) = 1.87. Dashed line: σ = 0; solid line: σ = 0.5; dash-dotted line: σ = 2.5; dotted line: σ = 5.0.
The four nearly horizontal lines (corresponding to the axisymmetric pre-buckling configurations)
overlap.

first identify the reference case, discussed in § 4.1, in which the surface tension (and
the pressure jump over the air–liquid interfaces) vanishes, σ = 0. For pext = 0 the
tube is undeformed, vctrl = 0. Positive external pressures in the range pext < p

(crit .)
ext = 3

compress the tube axisymmetrically, giving rise to the solid straight line with small
negative slope. For pext > p

(crit .)
ext = 3 the axisymmetric state is unstable and the tube’s

non-axisymmetrically buckled states are described by the upper and lower branches
of the dashed curve. The diagram indicates that for σ = 0 the tube buckles via a
supercritical bifurcation and that the system has a positive stiffness throughout its
deformation: an increase in external pressure is required to increase the tube’s collapse.
Hence, all buckled configurations are stable in the sense that small disturbances to
the tube’s shape (during which all other parameters are held constant) lead to a force
imbalance which would tend to return the tube wall to its undisturbed shape (see e.g.
Thompson & Hunt 1973; Michael 1981).

The other curves shown in figure 9 indicate how finite surface tension affects the
tube’s deformation characteristics. First, the diagram shows that an increase in surface
tension lowers the tube’s buckling pressure, p(crit .)

ext , since it increases the compression
of the tube. Second, since the tube’s cross-sectional area decreases with increasing
collapse, the liquid bridge thickness has to increase in order to conserve the volume
of fluid in the liquid bridge. This increases the wall area which is wetted by the liquid
bridge (and thus exposed to its compressive load) and leads to a destabilization which
manifests itself in the larger slope of the post-buckling curves, i.e. in a reduction of the
system’s stiffness: a smaller increase in pext is required to achieve the same increase in
collapse. A further destabilization occurs when the meniscus finger begins to develop
(when vctrl . −0.8) and further increases the wall area which is wetted by the liquid
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bridge. Figure 9 shows that the destabilization can be so strong that parts of the
post-buckling curve become branches of negative stiffness on which a decrease in
external pressure would be required to monotonically increase the tube’s deformation.
The configurations which correspond to these parameter values are unstable in the
sense that a perturbation to the tube’s shape leads to a force imbalance which tends
to increase the tube’s collapse even further.

For a liquid bridge with a small surface tension of σ = 0.5, the tube’s collapse
increases monotonically with the external pressure until the destabilization due to the
development of the meniscus finger creates a limit point on the post-buckling path
(at pext = p

(limit)
ext = 3.70). If the pressure were increased beyond that value, the strong

compressive load acting on the tube wall could only be balanced if the tube collapsed
much more strongly into a configuration in which opposite wall contact increases the
wall stiffness sufficiently.

For larger surface tensions, p(limit)
ext coincides with the buckling pressure p(crit .)

ext . In
these cases, the loss of stability of the axisymmetric configuration would be followed
by a large (quasi-steady) ‘jump’ into a very strongly collapsed configuration with
opposite wall contact over a large part of the tube wall. For the intermediate surface
tension of σ = 2.5, a short stable segment exists on the post-buckling curve in the
range 1.64 < pext < 1.70. Since this pressure range lies below the buckling pressure,
p

(crit .)
ext = 2.49, the corresponding configurations could only be realized by applying a

finite perturbation to the (linearly stable) axisymmetric configuration. For the largest
surface tension shown (σ = 5.0), the entire post-buckling path is unstable.

4.3.2. The stability of non-axisymmetric minimal liquid bridges

We are now able to analyse the stability of minimal liquid bridges in non-
axisymmetrically buckled tubes. For this purpose we first re-examine the deformation
characteristics of a tube containing a minimal liquid bridge whose volume we con-
stantly adjust such that the air–liquid interfaces stay in contact as the tube deforms.
However, as opposed to the case considered in § 4.2, we now keep σ constant and
vary pext as the control parameter. Figure 10(a) maps out the equilibrium paths,
vctrl (pext )|zm(max )=0, for this case. If we interpret these data as the outcome of a hypo-
thetical experiment then we observe the now familiar destabilizing effect of increasing
surface tension and the further destabilization of the system when the meniscus finger
begins to develop. Figure 10(b) shows the corresponding variation of Vmin and shows
that for small surface tensions (for which the tube’s collapse is dominated by pext so
that the tube collapses over its entire length, as shown in figure 5 b), the development
of the strongly pronounced finger leads to a sharp increase in Vmin as the collapse
increases beyond vctrl . −0.8.

To examine the stability of these equilibrium configurations to physically realizable
quasi-steady perturbations (i.e. perturbations during which the volume of fluid in the
liquid bridge is kept constant) we need to consider the system’s response to small
perturbations to the tube’s shape. The system’s stability is determined by the direction
of the force imbalance caused by these perturbations and hence by the slope of the
corresponding constant-volume deformation characteristics. An example of this (for
the case σ = 3.0) is given in figure 11 where only the lower branch of the post-buckling
curve, vctrl (pext )|zm(max )=0, is shown. Each point on this equilibrium path is intersected by
a second path, vctrl (pext)|V=Vmin =const ., which represents the tube’s deformation charac-
teristics under constant liquid-bridge volume. The slope of this curve was determined
by finite differencing and is represented by the arrows which point in the direction of
increasing collapse. Increasing collapse increases the liquid bridge thickness, therefore
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Figure 10. Diagrams illustrating the stability of elastic tubes containing minimal liquid bridges:
(a) shows the bifurcation diagram vctrl (pext )|zm(max )=0, (b) shows the minimum liquid bridge volume
Vmin as a function of the external pressure pext. The two air–liquid interfaces are kept in contact
such that they enclose a minimal liquid bridge and the surface tension σ is kept constant along
the curves. The thickened parts of the post-buckling curves correspond to configurations which
are stable to quasi-steady perturbations during which the liquid bridge volume remains constant.
σ = 0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0, increasing from right to left. The nearly straight lines of
small negative slope represent axisymmetric configurations.

the line vctrl (pext )|zm(max )=0 separates liquid bridges of finite thickness from (hypothetical)
configurations in which the two menisci intersect. Forward pointing arrows represent
configurations in which the system has positive stiffness and is stable. The system
is unstable to quasi-steady constant-volume perturbations at points at which the
equilibrium curve is intersected by backwards pointing arrows. The stable part of the
post-buckling curve is indicated by the thickened line. The same procedure was used
to identify the stable parts of the post-buckling curves in figure 10.

For hypothetical perturbations during which the opposite air–liquid interfaces were
kept in contact, only the backward curving parts of the equilibrium paths in figure
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Figure 11. Lower part of the bifurcation diagram for a tube containing a minimal liquid bridge
with σ = 3.0: the radial displacement along the tube’s minor axis in its most strongly collapsed
cross-section is plotted versus the external pressure, pext. The vectors indicate the slopes of the curves
corresponding to constant liquid bridge volume, vctrl (pext )|V=Vmin =const.. The stable post-buckling
parameter range (identified by the forward pointing arrows) is marked with a thicker line.

10(a) would be unstable. The additional restriction of constant liquid-bridge volume
leads to a further destabilization due to the increase in wetted wall area during such
perturbations. Figure 10 shows that the strength of the destabilization increases with
increasing surface tension: for a small surface tension of σ = 0.5, nearly the entire
forward curving part of the equilibrium path remains stable; for σ = 5.0, only a
small fraction of the forward curving path is stable; and for σ = 6.0 all buckled
configurations (without opposite wall contact) are unstable.

As mentioned above, minimal liquid bridges represent extreme configurations since
they are always unstable to perturbations which decrease the tube’s collapse and thus
rupture the liquid bridge. In this sense, liquid bridges of small but finite minimal
thickness, t, are more stable. However, an increase in the liquid bridge thickness also
increases the compressive load on the tube wall and thus destabilizes the system in
the sense that, in stable regimes, smaller external pressures are required to achieve the
same degree of collapse. Hence, the deformation characteristics for a tube containing
a liquid bridge of small but finite thickness, vctrl (pext )|zm(max )=−t/2, lie to the left of the
curves for the minimal liquid bridges, as indicated in figure 11.

It should be noted that a completely rigorous stability analysis has to be based
on the limit points of the Vtot (pext) curve, where Vtot is the total volume contained
in the tube (i.e. the sum of the volumes in its air-filled and liquid-filled parts); see
Maddocks (1987). However, the predictions for the stable and unstable parameter
regimes obtained from these curves are identical to those obtained from the bifurcation
diagrams presented here. Therefore, the Vtot(pext) diagrams are not shown here. The
author is grateful to one of the referees for pointing out this potential shortcoming
of the analysis presented above.
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5. Discussion

We will now consider the implications of the above results (and their limitations)
for the biological problem that originally motivated this study. Halpern & Grotberg
(1992) provide estimates for the typical dimensions and properties of the liquid-
lined terminal bronchioli of the lung (R0 ≈ 2.5 × 10−2 cm, h ≈ 2.5 × 10−3 cm,
E = 6.0 × 104 dynes cm−2, σ∗ = 20 dynes cm−1). Note that these dimensional
parameters affect the system’s behaviour only via the non-dimensional parameter
σ = σ∗/(K R0) which represents the ratio of the typical pressure jump over the
menisci to the tube’s bending stiffness. In diseases, σ, and hence the susceptibility
of the airways to collapse, can be affected by changes to the surface tension and
by changes to the wall stiffness. The values quoted above correspond to a value of
σ = 120. Note that the deformation characteristics of tubes containing a minimal
liquid bridge in their axisymmetric state (see figure 9) showed that a comparatively
moderate surface tension of σ = 5 leads to a significant reduction in the tube’s
buckling pressure. Furthermore, a surface tension of σ = 5 is already sufficient to
make all buckled configurations without opposite wall contact unstable, indicating
that the buckled tube would collapse into a very strongly deformed configuration
with opposite wall contact. The much larger value of σ in the physiological problem
would therefore suggest that axisymmetric liquid bridges in the terminal bronchioli are
strongly unstable to non-axisymmetric disturbances of the tube wall. If perturbed, the
airway walls would collapse strongly and in the process spread out the fluid contained
in the liquid bridge over a large region. This prediction is consistent with the usual
assumptions made in the modelling of the airway re-opening problem (Gaver et al.
1990). However, it should be noted that the precise nature of the collapse in the
physiological problem will also be influenced by the parenchymal tethering (see e.g.
Yap et al. 1994) which has not been included in the present model.

Potential limitations of the quasi-steady stability analysis presented in § 4.3 lie in
the neglected contact angle hysteresis (see e.g. Michael 1981). However, the parameter
studies in which variations of the contact angle were considered showed that it did
not significantly change the system’s overall behaviour. The neglect of gravitational
effects in the present study seems justified in view of the small Bond number Bo =
ρgR2

0/σ = 0.03 (for g = 9.81 m s−2, ρ = 1000 kg m−3) in the terminal bronchioli.
Motivated by the models used in studies of airway re-opening (Gaver et al. 1990),

the present study has only considered cases in which the tube buckles in a two-lobed
mode. However, it is well known (see e.g. Yamaki 1984 and Heil 1996) that thin-walled
cylindrical tubes can buckle with a higher number of circumferential waves. The most
unstable circumferential wavenumber for small perturbations to the axisymmetric
state increases as either the tube’s length or the fraction of the tube’s length which
participates in the buckling decreases. The shell displacement boundary conditions
which were used in the present study (axially periodic with a large wavelength) are
certain to make N = 2 the most unstable wavenumber, provided the surface tension
is not so high that the tube’s collapse becomes very strongly localized near the liquid
bridge. This condition could be achieved by subjecting the tube to a large negative
external pressure (which would tend to inflate it overall) and to induce its collapse
by a liquid bridge of large surface tension and large contact angle, such that a large
compressive load is applied over a small wetted area. No formal stability analysis was
carried out since the most unstable wavenumber for the physiological problem would
be determined by the time-dependent evolution from an axisymmetric state, in which
the liquid bridge has not yet been formed.
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The computations in § 4.2 showed that the minimum volume of fluid required to
form an occluding liquid bridge in a buckled elastic tube can be as low as 10% of the
fluid volume required to occlude an axisymmetric tube. It should, however, be stressed
that somewhat larger fluid volumes would presumably be required to form occluding
liquid bridges from an initially axisymmetric liquid lining. This phenomenon was
documented by Kamm & Schroter (1989) and Everett & Haynes (1972) in their studies
of the formation of liquid bridges in rigid axisymmetric tubes. Their experiments gave
V(exp)

min ≈ 5.6R3 and V(exp)
min ≈ 5.47R3, respectively. Both values are substantially larger

than the theoretical minimal value V(ax .)
min = 2π/3R3 for zero contact angle.

Two scenarios for the formation of non-axisymmetric liquid bridges in the phys-
iological system are conceivable. (i) The liquid lining in the axisymmetric tube first
undergoes the axisymmetric Rayleigh instability, accompanied by the corresponding
axisymmetric wall deformation (as analysed by Halpern & Grotberg 1992, 1993),
until an axisymmetric liquid bridge is formed in the tube. Based on the results of
the present study, we would expect this to be immediately followed by an elastic
instability during which the tube collapses strongly, while spreading out the (relative
large) volume of fluid in the liquid bridge. (ii) The axisymmetric tube undergoes
an elastic instability during the early stages of the axisymmetric evolution of the
combined fluid–elastic instability before an occluding liquid bridge has been formed.
This would require smaller volumes of fluid but would only be possible if the elastic
instability was ‘stronger’ than the stability of the axisymmetric air–liquid interface to
non-axisymmetric perturbations. The snap-through behaviour of the tube wall, found
in the present study, makes this condition likely to be fulfilled: if the timescale for the
(dynamic) snap-through buckling of the tube wall is shorter than the timescale on
which the relatively thin liquid film re-distributes itself along the tube wall, then the
rapid non-axisymmetric collapse could bring the opposing air–liquid interfaces into
contact and thus initiate the formation of an occluding liquid bridge.

It should be noted that occluding liquid bridges are not the only possible final
steady states that can develop from the instability of the initial liquid lining. Other
non-occluding static distributions of fluid along the buckled tube wall (e.g. similar to
those studied by Jensen 1996), are conceivable.

The results of the present study motivate an analysis of two problems: (i) the
inclusion of a model for the opposite wall contact, which will enable us to investigate
the strongly collapsed states which we found to be the only stable configurations
for sufficiently large surface tensions; (ii) an investigation of the time-dependent
formation of non-axisymmetric liquid bridges in elastic tubes and, in particular, their
evolution from the initially axisymmetric state. Work on both problems is currently
in progress.

6. Summary
The main results of this study are as follows: (i) menisci in uniformly collapsed

elastic tubes develop a finger along the tube’s centreline as the opposite walls approach
each other; (ii) for a wide range of control parameters (the contact angle and the
non-dimensional values of surface tension and external pressure) the compressive
forces generated by the liquid bridge are strong enough to hold the elastic tube in
a buckled configuration; (iii) the compressive forces generated by the liquid bridge
are strongly enhanced by the development of the meniscus finger; (iv) for many
parameter combinations, multiple minimal liquid bridges exist in tubes of varying
degree of collapse; (v) only a small subset of these equilibrium configurations is stable
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to quasi-steady perturbations; (vi) for sufficiently large surface tensions all buckled
equilibrium configurations (without opposite wall contact) are unstable. For such
parameters, the only stable configurations are very strongly collapsed tubes in which
the opposite wall contact has increased the wall stiffness sufficiently to balance the
strong compressive forces generated by the liquid bridge.

The author wishes to thank Professor T. J. Pedley, Dr Oliver Jensen, Andrew Hazel
and Harvey Williams for many enjoyable and helpful discussions. Financial support
was provided by an EPSRC fellowship.

Appendix A. The spine origins for strongly collapsed tubes
In § 3 we decomposed the vector to a point on the meniscus into the vectors B and

wS , such that B determines the origin for the meniscus displacement, w, along the
spine S; see figure 2. Equations (14) and (15) provided a simple mapping between
the two meniscus surface coordinates ζα and the coordinates of the spine origin B
for a contact line parametrization, Rc(ϕ), given by (6). This mapping is illustrated in
figure 12 (a): Every point P in the ζα-domain is associated with one reference point
on the contact line. The reference point is determined by its coordinate ϕ which
is chosen as ϕ = ϕP = arctan(ζ1/ζ2). We locate the image point P ′ in the (x, y)-
domain on the straight line connecting the origin of the (x, y)-coordinate system with
the reference point, Rc(ϕP ), on the contact line. The radial distance of P ′ from the
origin is a linear function of the parameter ρ = (ζ2

1 + ζ2
2 )1/2 ∈ [0, 1] such that ρ = 0

corresponds to the origin and ρ = 1 to a point on the contact line. P ′ determines
the (x, y)-coordinates of the spine origin B. The line 0P ′ forms an angle ϕ̂ with the
y-axis. In a strongly collapsed cross-section, such as the one shown in figure 12 (b),
this mapping will fail since multiple points on the contact line share the same polar
angle ϕ̂.

The modified mapping, devised to avoid this problem, is illustrated in figure 12 (b):
we split the ζα-domain into two regions which are separated by the line ζ2 = cosϕtr
(ϕtr = 35◦ proved a good choice and was used in all computations). Points in the
shaded region in the ζα-domain (where ζ2 > cosϕtr) are mapped onto lines which
emanate from the central point C ′ in the (x, y)-domain. The coordinates of C ′ were
chosen as (xC ′ , yC ′) = (0, R2

c (ϕtr)). All other points in the ζα-domain are mapped onto
straight lines which are parallel to the x-axis.

This is achieved by constructing the spine origin B as follows:
For all points P in the ζα-domain for which ζ2 > cosϕtr (e.g. P1 in figure 12 (b)),

we determine the auxiliary angle ϕ̃ from

tan ϕ̃ =
ζ1

ζ2 − cosϕtr
(A 1)

and use this to obtain the reference angle ϕP from

tan ϕ̃ =
sinϕP

cosϕP − cosϕtr
, (A 2)

the appropriate solution of which is

sinϕP =
sin(2 ϕ̃)

2

(
(1− cos2(ϕtr) sin2(ϕ̃))

1/2

cos(ϕ̃)
− cos(ϕtr)

)
. (A 3)
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Figure 12. Sketch illustrating the mapping between the meniscus surface parameters ζα and the
spine origin B for moderately and strongly collapsed cross-sections.

We control the radial distance of P ′ from C ′ by choosing

ρ =

(
ζ2

1 + (ζ2 − cosϕtr)
2

sin2 ϕP + (cosϕP − cosϕtr)2

)1/2

(A 4)

and choose the spine origin B as

B1 = ρR1
c (ϕP ), (A 5)

B2 = R2
c (ϕtr) + ρ

(
R2
c (ϕP )− R2

c (ϕtr)
)
, (A 6)

B3 = R3
c (ϕtr) + ρ

(
(R3

c (ϕP )− R3
c (ϕtr)

)
. (A 7)

For all points P in the ζα-domain for which ζ2 < cosϕtr (e.g. P2 in figure 12 b) choose

ϕP = arccos ζ2, (A 8)

ρ =
ζ1

(1− ζ2
2 )1/2

, (A 9)

and define the spine origin B as

B1 = ρR1
c (ϕP ), (A 10)

B2 = R2
c (ϕP ), (A 11)

B3 = R3
c (ϕP ). (A 12)
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Appendix B. An integral relation for the meniscus curvature
A useful integral relation for the meniscus curvature can be derived by integrating

the Euler–Lagrange equations, corresponding to (9),(
∂A

1/2
m

∂Rim,α

)
,α

= κNi
mA

1/2
m , (B 1)

over the (ζ1, ζ2), domain and applying the divergence theorem to obtain∮ (
∂A

1/2
m

∂Rim,α

)
nαdϕ =

∫ ∫
κNi

mAm
1/2dζ1dζ2, (B 2)

where n = [sin(ϕ), cos(ϕ)]T is the normal vector on the boundary of the (ζ1, ζ2)-
domain. Using elementary differential geometry, this equation can be transformed
into ∮

∂Rc(ϕ)

∂ϕ
×Nm

∣∣∣∣∂Rc(ϕ)

∂ϕ

∣∣∣∣ dϕ =

∫ ∫
κNmA

1/2
m dζ1dζ2. (B 3)

This expression equates the force exerted by the pressure jump over the meniscus
with the surface tension along the contact line, acting as a line force tangential to
the interface and normal to the contact line. For menisci with rotational symmetries
about the z-axis (such as those considered in this study), only the z-component of
this equation is non-zero and provides the following expression for κ:

κ =
1

Aproj

∮
∂Rc(ϕ)

∂ϕ
×Nm

∣∣∣∣∂Rc(ϕ)

∂ϕ

∣∣∣∣ dϕ, (B 4)

where Aproj is the area contained in the projection of the contact line onto the
(x, y)-plane. For a given contact line position and wall shape, the normal vector on
the meniscus, Nm, is determined by the contact angle. Hence the entire right-hand side
of the equation can be evaluated. In the numerical computations equation (B 4) was
used as a further consistency check for the numerical results. Typically, κ predicted by
(B 4) agreed with the computed value within a relative error of 10−4 and an increase
beyond this value was usually a sign of insufficient spatial resolution.

For uniformly collapsed tubes, Aproj is equal to the tubes’ cross-sectional area,
Aproj =Asect , and equation (B 4) can be further simplified to

κ =
S cos γ

Asect

, (B 5)

where S is the arclength of the projection of the contact line onto the (x, y)-plane,
which is equal to the tube’s inner circumference. Equation (B 5) has frequently been
used in the analysis of menisci in cylindrical tubes (see e.g. Finn 1986) and helped to
explain the development of the meniscus finger in § 4.1.

Appendix C. The case γ = 0

This Appendix shows why the determination of the meniscus shape for zero contact
angle (γ = 0) cannot be dealt with directly by the energy-based approach used in
this study. We used the variational principle (9) to determine the meniscus shape
for a given wall shape by minimizing the surface energy of the air–liquid interface,
subject to the contact angle boundary condition. An alternative (but mathematically
equivalent) formulation is given by the minimization of all surface energies (i.e.
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including the wall–fluid surface energies). The corresponding form of the variational
principle (9) is given by∫ ∫ (

δA1/2
m − κ Nm · δRmA1/2

m

)
dζ1 dζ2 − β δ

∫ ∫
A1/2

w dξ1 dξ2 = 0, (C 1)

where β = (σwa − σwl)/σ is the spreading coefficient which is related to the contact
angle by β = cos γ, because of Young’s equation (10). Aw = |Rw,1 × Rw,2|2 is the
determinant of the metric tensor of the inner wall surface parametrized by (ξ1, ξ2).
The last integral in (C 1) describes the change in the total wall–fluid surface energy
(given by the sum of the wall–liquid and wall–air surface energies, which are the
products of the wetted and dry wall surface areas with the respective surface tensions)
during a virtual displacement of the contact line. Carrying out the variations of the
second integral generates Young’s equation (10) as an essential boundary condition
for the unchanged Euler–Lagrange equations (B 1).

For zero contact angle the meniscus meets the tube wall tangentially and we have
β = 1 and therefore σwa − σwl = σ. During a variation of the contact line position,
the decrease in wetted wall area is equal to the increase in dry wall area. Hence
it is always possible to extend any given meniscus shape by advancing the contact
line into the previously dry wall area and generating a ‘wet collar’ between the old
and new contact line positions without changing the overall energy balance: The
increase in the air–liquid surface energy is exactly compensated by the decrease in
the total wall–fluid surface energy (note that Nm · δRm = 0 on the ‘wet collar’). This
causes the energy minimization to fail and as one approaches the limit γ → 0 in the
computations, the convergence of the Newton iteration becomes increasingly slow. At
the same time the contact line becomes increasingly wavy since its position becomes
less constrained by the energy minimization. For γ = 0, the Newton iteration fails to
converge.
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